105 research outputs found

    Reducing antibiotic prescribing and addressing the global problem of antibiotic resistance by targeted hygiene in the home and everyday life settings: A position paper

    Get PDF
    Antimicrobial resistance (AMR) continues to threaten global health. Although global and national AMR action plans are in place, infection prevention and control is primarily discussed in the context of health care facilities with home and everyday life settings barely addressed. As seen with the recent global SARS-CoV-2 pandemic, everyday hygiene measures can play an important role in containing the threat from infectious microorganisms. This position paper has been developed following a meeting of global experts in London, 2019. It presents evidence that home and community settings are important for infection transmission and also the acquisition and spread of AMR. It also demonstrates that the targeted hygiene approach offers a framework for maximizing protection against colonization and infections, thereby reducing antibiotic prescribing and minimizing selection pressure for the development of antibiotic resistance. If combined with the provision of clean water and sanitation, targeted hygiene can reduce the circulation of resistant bacteria in homes and communities, regardless of a country\u27s Human Development Index (overall social and economic development). Achieving a reduction of AMR strains in health care settings requires a mirrored reduction in the community. The authors call upon national and international policy makers, health agencies, and health care professionals to further recognize the importance of targeted hygiene in the home and everyday life settings for preventing and controlling infection, in a unified quest to tackle AMR

    Unraveling 5f-6d hybridization in uranium compounds via spin-resolved L-edge spectroscopy

    Get PDF
    FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESThe multifaceted character of 5f electrons in actinide materials, from localized to itinerant and in between, together with their complex interactions with 6d and other conduction electron states, has thwarted efforts for fully understanding this class of compounds. While theoretical efforts abound, direct experimental probes of relevant electronic states and their hybridization are limited. Here we exploit the presence of sizable quadrupolar and dipolar contributions in the uranium L-3-edge X-ray absorption cross section to provide unique information on the extent of spin-polarized hybridization between 5f and 6d electronic states by means of X-ray magnetic circular dichroism. As a result, we show how this 5f-6d hybridization regulates the magnetism of each sublattice in UCu2Si2 and UMn2Si2 compounds, demonstrating the potentiality of this methodology to investigate a plethora of magnetic actinide compounds.816FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPES10/19979-92013/22436-52014/05480-32014/26620-8Sem informaçãoWe are thankful to Roberto Caciuffo and Gerry Lander for discussions and comments on the manuscript. We thank Jose Carlos Botelho Monteiro for providing one of the UMn2Si2 samples. Work at Argonne is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC-02-06CH11357. Work at LNLS is supported by the Brazilian ministry of science and technology. This research was supported by FAPESP grants 2013/22436-5, 2014/05480-3, 10/19979-9, and 2014/26620-8. R.D.d.R. thanks the funding for his Ph.D. fellowship from CAPES brazilian agency

    Point Prevalence Surveys of Antimicrobial Use among Hospitalized Children in Six Hospitals in India in 2016.

    Get PDF
    The prevalence of antimicrobial resistance in India is among the highest in the world. Antimicrobial use in inpatient settings is an important driver of resistance, but is poorly characterized, particularly in hospitalized children. In this study, conducted as part of the Global Antimicrobial Resistance, Prescribing, and Efficacy in Neonates and Children (GARPEC) project, we examined the prevalence of and indications of antimicrobial use, as well as antimicrobial agents used among hospitalized children by conducting four point prevalence surveys in six hospitals between February 2016 and February 2017. A total of 681 children were hospitalized in six hospitals across all survey days, and 419 (61.5%) were prescribed one or more antimicrobials (antibacterials, antivirals, antifungals). Antibacterial agents accounted for 90.8% (547/602) of the total antimicrobial prescriptions, of which third-generation cephalosporins (3GCs) accounted for 38.9% (213/547) and penicillin plus enzyme inhibitor combinations accounted for 14.4% (79/547). Lower respiratory tract infection (LRTI) was the most common indication for prescribing antimicrobials (149 prescriptions; 24.8%). Although national guidelines recommend the use of penicillin and combinations as first-line agents for LRTI, 3GCs were the most commonly prescribed antibacterial agents (55/149 LRTI prescriptions; 36.9%). In conclusion, 61.5% of hospitalized children were on at least one antimicrobial agent, with excessive use of 3GCs. Hence there is an opportunity to limit their inappropriate use

    Global proteome changes in the rat diaphragm induced by endurance exercise training

    Get PDF
    Mechanical ventilation (MV) is a life-saving intervention for many critically ill patients. Unfor- tunately, prolonged MV results in the rapid development of diaphragmatic atrophy and weakness. Importantly, endurance exercise training results in a diaphragmatic phenotype that is protected against ventilator-induced diaphragmatic atrophy and weakness. The mechanisms responsible for this exercise-induced protection against ventilator-induced dia- phragmatic atrophy remain unknown. Therefore, to investigate exercise-induced changes in diaphragm muscle proteins, we compared the diaphragmatic proteome from sedentary and exercise-trained rats. Specifically, using label-free liquid chromatography-mass spectrome- try, we performed a proteomics analysis of both soluble proteins and mitochondrial proteins isolated from diaphragm muscle. The total number of diaphragm proteins profiled in the sol- uble protein fraction and mitochondrial protein fraction were 813 and 732, respectively. Endurance exercise training significantly (P<0.05, FDR <10%) altered the abundance of 70 proteins in the soluble diaphragm proteome and 25 proteins of the mitochondrial proteome. In particular, key cytoprotective proteins that increased in relative abundance following exer- cise training included mitochondrial fission process 1 (Mtfp1; MTP18), 3-mercaptopyruvate sulfurtransferase (3MPST), microsomal glutathione S-transferase 3 (Mgst3; GST-III), and heat shock protein 70 kDa protein 1A/1B (HSP70). While these proteins are known to be cytoprotective in several cell types, the cyto-protective roles of these proteins have yet to be fully elucidated in diaphragm muscle fibers. Based upon these important findings, future experiments can now determine which of these diaphragmatic proteins are sufficient and/or required to promote exercise-induced protection against inactivity-induced muscle atrophy

    Induction of CD4+CD25+FOXP3+ Regulatory T Cells during Human Hookworm Infection Modulates Antigen-Mediated Lymphocyte Proliferation

    Get PDF
    Hookworm infection is considered one of the most important poverty-promoting neglected tropical diseases, infecting 576 to 740 million people worldwide, especially in the tropics and subtropics. These blood-feeding nematodes have a remarkable ability to downmodulate the host immune response, protecting themselves from elimination and minimizing severe host pathology. While several mechanisms may be involved in the immunomodulation by parasitic infection, experimental evidences have pointed toward the possible involvement of regulatory T cells (Tregs) in downregulating effector T-cell responses upon chronic infection. However, the role of Tregs cells in human hookworm infection is still poorly understood and has not been addressed yet. In the current study we observed an augmentation of circulating CD4+CD25+FOXP3+ regulatory T cells in hookworm-infected individuals compared with healthy non-infected donors. We have also demonstrated that infected individuals present higher levels of circulating Treg cells expressing CTLA-4, GITR, IL-10, TGF-β and IL-17. Moreover, we showed that hookworm crude antigen stimulation reduces the number of CD4+CD25+FOXP3+ T regulatory cells co-expressing IL-17 in infected individuals. Finally, PBMCs from infected individuals pulsed with excreted/secreted products or hookworm crude antigens presented an impaired cellular proliferation, which was partially augmented by the depletion of Treg cells. Our results suggest that Treg cells may play an important role in hookworm-induced immunosuppression, contributing to the longevity of hookworm survival in infected people
    corecore